Function, Vector Space
by mervyn
Exponential, Logarithmetic, Inverse Trigonometric
Polynomial function \(P(x)=a_{0}+ a_{1}x+ ...+a_{n}x^{n}, \ a_{n}\neq 0\)
Exponential Function \(f(x)=a^x, \ a>0\)
- Predict Future Population P(t): population at time t
\(P_0\): present population
r: Malthus constant
\[P(t)=P_{0}e^{rt}\]- Radiocarbon Dating Model m(t): remaining density of radio carbon at future t
\(m_0\): present
k: negative decided by half-life
\[m(t)=m_{0}e^{kt}\]e: Euler number For \(y=a^x\), when “slope of tangent line at (0,1)” = 1
e = a
Log Function
Inverse function of exponential function. \(y=a^x, a>0, a\neq 1\) \(x=log_{a}y\)
\(a^{log_{a}(y)}=y\): \(a^{log_{a}}\) and \(log_{a}(y)\) are inverse relation
- \(a^x\) is inverse function of \(log_{a}(y)\)
\(log_{a}a^{(x)}= x\): \(log_{a}a\) and \(a^{(x)}\) are inverse relation
- \(log_{a}(y)\) is inverse function of \(a^x\)
Trigonometry
- \(\sin^{2}x+\cos^{2}x=1\) \(\sin^{2}x = (\sin x)^{2}, \sin x^{2}=\sin (x^2)\)
- \[1+ \tan^{2}x= \sec^{2}x\]
- \[1+ \cot^{2}x= \csc^{2}x\]
- \(\sin (x\pm y)=\sin x\cos y\pm\cos x\sin y\) \(\cos(x\pm y)=\cos x\cos y\mp\sin x\sin y\) \(\tan(x\pm y)=\frac{\tan x\pm\tan y}{1\mp\tan x\tan y}\)
- \(\sin^{2}\frac{x}{2}=\frac{1-\cos x}{2}\) \(\cos^{2}\frac{x}{2}=\frac{1+\cos x}{2}\)
- Sine Formula \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
- Cosine 1st Formula \(a= c\cos B+b\cos C\)
- Cosine 2nd Formula \(a^{2}=b^{2}+c^{2}-2bc\cos \theta\)
Comments
Post comment